
Cataloging design patterns for Internet of Things
artifact integration

Rafał Tkaczyk∗, Katarzyna Wasielewska∗, Maria Ganzha†∗, Marcin Paprzycki‡∗,
Wiesław Pawłowski§,∗, Paweł Szmeja∗, Giancarlo Fortino¶,

∗Systems Research Institute Polish Academy of Sciences, Warsaw, Poland
Email: firstname.lastname@ibspan.waw.pl

†Warsaw University of Technology, Warsaw, Poland
‡Warsaw Management Academy, Warsaw, Poland

§University of Gdańsk, Gdańsk, Poland
¶University of Calabria, Rende, Italy

Email: g.fortino@unical.it

Abstract—While Internet of Things (IoT) systems/application-
s/platforms/devices materialize with increasing speed, software
engineering “reflection” does not follow “fast enough”. The
situation is particularly “unbalanced” when one considers in-
tegration of independently developed IoT artifacts. To address
this problem, we attempt at cataloging software design patterns
that materialize in the context of interoperability of/within IoT
ecosystems. The aim of this contribution is to briefly describe
most common patterns (based on results of the INTER-IoT
project), including analysis of common issues, and elaboration
of a need for the creation of new (or extending existing) patterns
in order to achive solutions applicable for IoT artifact integration.

I. INTRODUCTION

Recently, one can observe re-emergence of sizable gap be-
tween “foundations of software engineering” and development
of distributed systems. Specifically, this is visible in the design
and implementation of Internet of Things (IoT) ecosystems
(consisting of, among others, applications/systems/platform-
s/devices). While it can be claimed that the development of
scalable, and inherently heterogeneous, IoT environments does
not need software engineering, we believe that such claims are
shortsighted and do not take into account importance of meta-
level reflection, brought by software engineering. Therefore,
within the scope of the INTER-IoT project [1] we have
decided to delve into software engineering aspects of creation
of interoperable IoT ecosystems. Out of multiple facets of
software engineering, we start from identifying design patterns
that materialize when forming IoT ecosystems, consisting of
heterogeneous artifacts. The context of this work, and a source
of reflection, is provided by use cases of the INTER-IoT
project. Note that, while patterns were identified within the
scope of the project, they generalize easily.

Before proceeding, let us note that the design pattern is
understood as a general reusable solution to a problem that
recurs repeatedly within a specific context in software design.
It is a written document (based on a template) describing how
to solve a problem that can be used in multiple situations. In
this way, design patterns are formalized best practices. Their
purpose is to increase re-usability and quality of code, while
reducing the effort of development of software systems ([2],

[3], [4]). Furthermore, a pattern catalog is a collection of re-
lated patterns, subdivided into a (small) number of categories.
Here, note that some amount of cross referencing between
patterns is natural in a pattern catalog [2].

Initial version of the proposed pattern catalog, and the
process of it’s design is presented in what follows. Section II
describes the methodology applied to pattern identification and
description. Next, Section III presents results of examination of
common, well-known pattern catalogs. Section IV outlines the
format, used to describe identified patterns. Section V presents
the obtained catalog and finally, Section VI concludes the text.

II. IOT INTEROPERABILITY DESIGN PATTERN
IDENTIFICATION – METHODOLOGY

The proposed pattern catalog is based on the analysis of
already existing solutions, good practices, and knowledge and
experience of specialists working within the area. Let us now
outline steps of the pattern identification process (detailed
description can be found in1).

Step 1. Analysis of the state-of-the-art (SotA) (see, Sec-
tion III) by examining common, well-known, pattern catalogs
and extracting knowledge (e.g. verifying applicability in the
IoT domain) useful to identify issues unsolvable by already
defined solutions. Note that, SotA analysis included not only
IoT pattern catalogs but also catalogs dedicated to, e.g.,
integration and SOA.

Note that while the design of IoT artifacts can apply
existing design patterns, there are no formal guidelines for
the IoT integration. Therefore, following the INTER-IoT
approach we have decided to conceptually decompose IoT
ecosystems into the following layers: Device-to-Device
(D2D), Networking-to-Networking (N2N), Middleware-
to-Middleware (MW2MW), Application & Services-to-
Application & Services (AS2AS), Data & Semantics-to-
Data & Semantics (DS2DS), and CROSS-Layer and use them
in our analysis ([5]).

1D5.1 INTER-IoT Design patterns for Interoperable IoT Systems, INTER-
IoT public deliverable, available June 2018.

978-1-5386-4328-0/18/$31.00 ©2018 IEEE

Step 2. Analysis of IoT artifacts’ integration process. Here,
results were compared with those from Step 1, in order to
extract the initial set of new patterns, related to integration
on different layers. The use cases considered in the INTER-
IoT project have also been analyzed, searching for procedures,
which could be generalized and formalized to become patterns.
It was decided that the initial catalog will follow the proposed
structure, providing patterns for the identified layers. Note that
most new patterns were inspired by multiple sources (includ-
ing paradigms/technologies, e.g. flow–based programming).

Step 3. Detailed analysis of the initial set of patterns, with
focus put on patterns related to integration/interoperability
of/between IoT artifacts. As a result, the set of patterns
was narrowed down (by eliminating patterns not related to
integration).

Step 4. Final version of the catalog, using the design pattern
format, defined to describe the identified patterns.

III. ANALYSIS OF THE STATE OF THE ART

The main intention of SotA analysis was to identify patterns
“useful for” IoT integration, understood as the ability of
two (or more) IoT artifacts to exchange data, and trigger
appropriate actions. Selected/created patterns should support
development of integrated IoT ecosystems. Therefore, the most
crucial were design patterns for: (i) integration/communica-
tion, (ii) security, (iii) architecture of software components,
and (iv) domain use case solutions. This section summarizes
inspected pattern catalogs. The short description includes:
(i) catalog names, (ii) references, and (iii) short analysis
(details can be found in the aforementioned deliverable).

1) Object-oriented Patterns, proposed by “Gang of Four”
(GoF; [3], [4]), are fundamental in software engineering
(object-oriented design theory and practice). In our
context, GoF is a reference for software components
developed during IoT artifacts integration. Moreover,
many pattern description formats are based on the one
proposed by GoF, because its structure is clear and
intuitive.

2) Enterprise Integration Patterns (EIP), are an extension
of GoF patterns, and provide guidance when integrat-
ing or designing distributed systems [7]. In particular,
patterns such as “Message transformation”, “Messaging
Pattern”, “Messaging Routing” are of interest.

3) Service-Oriented Architecture (SOA) Patterns, includ-
ing Micro-services, are related to: (i) solutions within
AS2AS and MW2MW layers, (ii) characteristics of
services exposed by IoT artifacts that join the ecosystem,
(iii) service orchestration [8], [9].

4) Reactive Patterns are usable in any distributed applica-
tion, and thus also for IoT artifacts integration. “Mes-
sages”, “Message Flow” and “Flow Control” patterns
are of particular interest here [10], [11].

5) Agent-oriented Design Patterns, could be used to al-
low integration, interconnection, and interaction between
agent-based and/or non-agent software components and
systems [12], [13], [14]. In particular, the “Facilitator”

and “Agent Proxy” patterns by Kendall [14] can be
useful/effective to support the design of gateways and
proxies between subsystems (or layers) of IoT systems.

6) IoT Patterns, identified in [15], [16] are common to all
IoT solutions. However, none of found catalogs is related
to the integration of existing IoT artifacts (they are
mainly focused on the deployment of new IoT systems).

7) Security Patterns deal mostly with authentication and
authorization, as well as secure communication [17],
[18]. However, they do not deal with security related
to interoperability within IoT ecosystems.

IV. IOT INTEGRATION PATTERN FORMAT

Different design patterns specifications have been proposed.
They usually include a narrative text, with a predefined struc-
ture. Based on [19], as well as work of GoF ([3], [4]), the
following pattern description has been used in our work:

• Pattern name – unique name of the pattern.
• Inspired by – name(s) of pattern(s) that a given one is

based on / extends. In most cases, when pre-existing pat-
terns did not fully solve specific problems, new patterns
were created, extending existing ones.

• Related patterns – other patterns, related to the given one.
• Intent (summary) – short description of the goal behind

the pattern and the reason for using it (an extension of
the “Pattern name”, explaining its action/purpose).

• Problem & Solution – scenario that illustrates a problem
and how the pattern solves it.

• Applicability – situations, in which the pattern is usable;
context for the pattern.

• UML representation – structure of the pattern modeled
with a UML diagram (mostly deployment and component
diagrams).

• Implementation – extension of the “UML representation”
property, i.e. description of realization and architecture
(not a source code, like in the GoF).

• Known uses – an example usage of the pattern within the
INTER-IoT pilot installation.

Due to space limitations, fields: “UML representation”,
“Implementation”, and “Known uses” have not been included
in what follows (find them in INTER-IoT deliverable D5.1).

V. DESIGN PATTERNS FOR IOT ARTIFACTS INTEGRATION –
FINAL CATALOG

This section summarizes the identified patterns related to
IoT artifacts integration.

A. D2D Layer

Pattern name: IoT Gateway Event Subscription
Inspired by: (1) “Publish/Subscribe” (IoT Patterns: Design
Patterns for Interaction), (2) “Publish-Subscribe Channel”
(EIP: Messaging Channels), (3) “Facilitator”, and (4) “Proxy”
(Agent Design Patterns: by Kendall).
Related patterns: (1) “D2D REST Request/Response”.
Intent: D2D gateway allows data forwarding (any type).

Flexibility in the D2D layer is achieved by decoupling a
gateway into: a physical part that handles network access
and communication protocols, and a virtual part dealing with
remaining gateway operations and services. Note that, in
this way, data providers (communicating within the network)
and their identities (known to the virtual layer) can also be
decoupled.
Problem & Solution: To provide interoperability between two
heterogeneous IoT devices, the solution should establish bidi-
rectional, asynchronous communication with the ability to
publish, filter and consume data. Here, the IoT gateway is used
as a subscription mechanism. It is an intermediary between
IoT artifacts (in D2D communication, between two devices).
It allows transmission of data generated by “sensors” to the
destination, and asynchronous messaging between artifacts
that interact with it. If required, the gateway should perform
protocol conversion to enable communication. Senders of
messages (publishers) do not program messages sent directly
to specific receivers (subscribers). Instead, they publish them,
using defined classes, without knowledge of subscribers. Sim-
ilarly, subscribers express interest in one or more classes and
receive only messages of interest (without knowing publish-
ers). Significant is the structure of the message, which should
contain subscription information (e.g. message endpoint; see:
“D2D REST Request/Response” pattern).
Applicability: Used within event-based communication, when
asynchronous data is to be pushed/pulled to/from the gateway.

Pattern name: D2D REST Request/Response
Inspired by: (1) “Request-Response” (Reactive Patterns: Mes-
sage Flow), (2) “Request-Reply” (EIP: Messaging Patterns),
(3) “Request/Response” (IoT Patterns: Design Patterns for
Interaction).
Related patterns: (1) “IoT Gateway Event Subscription”.
Intent: A request/response solution for gateway communica-
tion within the D2D layer.
Problem & Solution: IoT Gateway needs to communicate
with IoT artifacts. It should be accessible to authorized exter-
nal elements to enable reception of information and execution
of control and configuration orders. For example, the main
goal of IoT ecosystems is to allow heterogeneous IoT artifacts
to retrieve information. Thus, the artifacts’s middleware should
be able to communicate with the IoT gateway to enable
needed information flows. Thus, it is desirable to connect IoT
artifacts (if possible) through a HTTP/REST API using the
Request/Response pattern. This communication pattern allows
message exchange, in which a requester (e.g. middleware
or gateway) sends a request message to a replier system,
which receives and processes the request (e.g. middleware or
gateway), ultimately returning a message, in response.
Applicability: Used when communication between the mid-
dleware of an IoT artifact and the IoT gateway is performed
through a REST API (middleware → gateway is typically
based on Publish/Subscribe). Also, for management purposes,
the gateway will expose a REST endpoint where configu-
ration and management actions can be performed using the

Request/Response patterns.

B. N2N Layer

Pattern name: IoT Pattern for Orchestration of SDN Network
Elements
Inspired by: (1) “Software-defined networking (SDN) orches-
tration” ([23]), (2) “Network virtualization (NV)” ([24]).
Related patterns: none
Intent: Monitoring and configuration of SDN elements
(virtual-switches) with an orchestrator component (Controller)
exchanging flow and control messages. To provide interoper-
ability between different domains connected to a network or
between different network topologies and/or configurations.
Problem & Solution: Domain-focus of IoT deployments iso-
lates them from each other. One of approaches to intercon-
nection is, instead of realizing it at the device/gateway level,
to move it to upper layers. In particular, at the network
layer, interoperability and exchange of information can be
achieved by applying pattern that manages elements of the
network that provide connection from different domains to
the network itself. The pattern is used in development of
virtual SDNs, where all elements are virtual resources, or
instances, controlled within a central point, or orchestrator.
N2N interconnection can then be performed through the SDN.
Different networks (in different locations), can be virtually
interconnected and belong to a single Virtual LAN. Thus,
physical separation of networks becomes “invisible”, thus
facilitating elastic definition of needed connectivity.
Applicability: Used when an IoT SDN is deployed, to enable
its functionality. Allows total software control over network
functions, and transparent N2N interoperability.

C. MW2MW Layer

Pattern name: IoT Artifact’s Middleware Simple Component
Inspired by: (1) “Simple component” (Reactive Patterns: Fault
Tolerance and Recovery).
Related patterns: none
Intent: Every IoT artifact is designed to perform (in full) a
single task (single responsibility principle, where each class
should have only one reason to change).
Problem & Solution: In complex systems with multiple func-
tions, it may be necessary to have these functions performed by
different components. Their responsibilities are to be divided
recursively, until desired component granularity is reached.
This enables testing, debugging and extending complex system
more efficiently, simplifying all operations.
Applicability: Basic pattern that can be universally applied.
Does not impose level of granularity to be achieved, but
indicates that analysis should be performed in order to end
up with the best component decomposition. Should be applied
recursively, remembering to not to divide components too far,
to avoid trivial ones.

Pattern name: IoT artifact’s Middleware Message Broker

Inspired by: (1) “Message Broker” (EIP: Message Routing),
(2) “Broker” (IoT Patterns: Design Patterns for Interaction).
Related patterns: (1) “IoT artifact’s Middleware Self-
contained Message”.
Intent: Facilitates passing messages between IoT artifacts.
Problem & Solution: In middleware, composed of several
independent components, point-to-point connections should be
avoided, as they result in multiple interfaces that expose oper-
ations of each component. Furthermore, having point-to-point
interfaces complicates dynamic reconfiguration, matching of
security constraints, and quality of service (QoS) require-
ments management. Message broker helps to overcome those
limitations by enforcing common messaging interface upon
different components. This allows components to initiate in-
teractions with other components, no matter their architecture
and purposes. Each component communicates directly with
the broker only, while within the broker, each component is
represented with a logical name, making its internal operation
hidden from other components. Crucial is the proper format of
message, which consists of the payload and the label, storing
information needed by the broker.
Applicability: Central Message Broker receives messages
from multiple message producers, determines their destina-
tions (message consumers), and routes them to channels spe-
cific for their destinations. Allows decoupling the sender from
the destination and maintains central control over the flow of
messages. This can be achieved through usage of topics, to
which consuming components can: subscribe, and proceed to
consume awaiting messages.

Pattern name: IoT Artifact’s Middleware Self-contained Mes-
sage
Inspired by: (1) “Self-contained message” (Reactive Patterns:
Message flow), (2) “Messaging Metadata” (SOA Patterns).
Related patterns: none
Intent: Messages contains complete information needed for
execution of a specific action.
Problem & Solution: Within middleware, messages should be
“pure and complete” representations of events (or commands),
regardless when they are to be interpreted. Each middleware
component must always be able to extract from the message,
stored there, complete information needed for its routing and
interpretation, with only minimal data stored within the mid-
dleware components. Each message has distinct set of types
associated with it. Each middleware component processes
and routes messages based solely on these types. For each
message that travels “downstream”, there can be a response
that travels “upstream”. Such messages might, for example,
include additional response message type. Matching messages
that go downstream with responses that go upstream can be
done through remembering and distinguishing different chains
of messages (conversations).
Applicability: Allows middleware components to be “context-
free”, storing only a minimal information needed for message
processing and routing. Can be also employed when there
is no need to reference past messages, except for responses,

and even then, these are only semantically linked to original
messages (could exist without original messages).

Pattern name: IoT Artifact’s Middleware Message Translator
Inspired by: (1) “Message Translator” (EIP: Message Trans-
formation), (2) “Data Format Transformation” (SOA Patterns).
Related patterns: none
Intent: Translation of messages to/from IoT artifact’s middle-
ware internal message format and platform’s proprietary data
models and data formats.
Problem & Solution: The purpose of the middleware is to
pass information between different IoT artifacts. However,
artifacts produce/consume messages in “their” formats and
data models. Hence, to make sense of exchanged messages,
they have to be syntactically and semantically translated. A
message translator enables conversion between proprietary
data models and data formats, used by artifacts, and the
internal data model and data format, used by IoT middleware
components.
Applicability: Enables interoperability between different plat-
forms without the need to introduce translations between every
possible pair of platforms, i.e. translation into and out of the
common INTER-IoT data model [25]. Semantic translation
from and into the internal message format is done by a
dedicated IoT semantic translation component, while syntactic
translation is completed in bridges to/from artifacts, as only
they know the internal data syntax.

D. AS2AS Layer

Pattern name: AS2AS Flow-based Service Composition
Inspired by: (1) “Flow–based programming” ([26]).
Related patterns: (1) “AS2AS Service Orchestration”, (2)
“AS2AS Discovery of IoT Services”
Intent: Generate execution flow that allows interoperation and
composition of services from different IoT artifacts.
Problem & Solution: Pattern necessary to define execution
flow that allows specific sequence of execution of multiple IoT
services. Flow–based programming (FBP) defines applications
and services as networks of “black box” processes, which
exchange data across predefined connections by message de-
livery, where connections are specified externally to processes.
Considered pattern allows creation of sequential execution
flows using those services, thus allowing composition among
different IoT services. Black boxes that represent IoT services
can be linked by wiring the output of a service with the input
of a different one (output messages from a service are routed to
another service input). Thus, by wiring IoT services execution
flow can be instantiated.
Applicability: Used in black box representation of IoT ser-
vices to be interconnected through an FBP link, generating a
flow.

Pattern name: AS2AS Service Orchestration
Inspired by: “Service Orchestration” (SOA Patterns).
Related patterns: none

Intent: To specify orchestration of services to facilitate inter-
actions among different IoT services.
Problem & Solution: Cooperating, diverse, heterogeneous IoT
artifacts involve huge number of different services that have
to work together. Important is not only the message flow
from point(s) to point(s) but also triggering necessary actions
(during the flow). The common problem is that existing
processes/actions are duplicated (not reused). This pattern
allows union and orchestration of heterogeneous IoT services,
creating a specific process. The main idea is to define a set
of IoT nodes, i.e. services and interfaces that run within the
integrated platforms. Internal, central, element wires nodes
necessary to handle the specific task and controls processes.
Applicability: Reuse of process fragments. Orchestration en-
ables composition of IoT service workflows, based on services
from IoT artifacts.

Pattern name: AS2AS Discovery of IoT Services
Inspired by: (1) “Discovery” (IoT Patterns: Design Patterns
for Interaction), (2) “Enterprise inventory” (SOA Patterns).
Related patterns: none
Intent: Registering and claiming specific services, used by the
artifacts (within the IoT ecosystem).
Problem & Solution: Multiple IoT services, from different
IoT platforms, provide a wide range of functionalities that have
to be discoverable, to be aware of them and to use them. This
pattern enables registration of services (in a service catalog),
in order to find them and (potentially) use through an AS2AS
layer solution. Here, only registered services, indicating their
associated features, can be discovered.
Applicability: Pattern for providing service interoperability
via registration and service retrieval. Applied to services that
run within the IoT ecosystem, and used by other IoT artifacts.

E. DS2DS Layer

Pattern name: Alignment-based Translation Pattern
Inspired by: (1) “Message Translator” (EIP: Message Trans-
formation), (2) “Data Model Transformation” and (3) “Meta-
data centralization” (SOA Patterns), (4) “Market Maker”
(Agent Design Patterns).
Related patterns: none
Intent: Semantic translation of RDF messages exchanged
between IoT artifacts, based on alignments (sets of correspon-
dences) defined between artifacts’ ontologies.
Problem & Solution: Building the IoT ecosystem involves
combining existing solutions, which (likely) belong to different
owners and have been developed using different technologies
(e.g. Web Services “combined with” a graph database, com-
municating using JSON messages, to exchange information
with application that uses XML messages). Consequently, they
differ both on syntactic and semantic level. Interoperation
between artifacts should be achieved regardless of the un-
derlying technology. Without loss of generality, we assume
RDF message format, since other formats can be transformed
to RDF. Semantics of messages is artifact specific (ontology

can be natively supported, or semantics, e.g. expressed in
XSD, can be lifted to an OWL ontology). Hence, for semantic
interoperability, a method for defining correspondences should
support mapping between specific URIs, parts of the RDF
structure, transformations etc. The component implementing
the translation should provide interfaces to submit messages
to be translated and publish translated messages.
Applicability: Providing semantic translation between RDF
messages exchanged between heterogeneous IoT artifacts.
Translation, based on one-to-one translation (alignment),
should be possible to define for any two artifacts.

Pattern name: Translation with Central Ontology
Inspired by: (1) “Message Translator” (EIP: Message Trans-
formation), (2) “Data Model Transformation” and (3) “Meta-
data centralization” (SOA Patterns), (4) “Market Maker”
(Agent Design Patterns).
Related patterns: none
Intent: Semantic translation of RDF messages exchanged
between IoT artifacts, where one involves central/common
data model.
Problem & Solution: To provide common understanding in
the semantic translation process a modularized central ontol-
ogy can be created on the basis of IoT and domain ontologies.
Here, a domain ontology is a conceptual model for a specific
domain, e.g. transportation, health, etc. IoT ontology describes
different IoT aspects, e.g. platforms, devices, sensors, services,
etc. Central ontology should reuse / be based on existing
standards (e.g. SSN, SOSA, SAREF, etc.). This approach
is highly scalable: it is possible to add artifacts to the ex-
isting IoT ecosystem by instantiating translations with the
central ontology (i.e. creation of alignments; see above). This
approach requires less preparation/work, as only a single
“point of joining” has to be instantiated. Furthermore, the
long-term maintenance is simplified, as changes in a single
platform require localized adjustments only. The component
implementing the translation should provide interfaces to
submit messages to be translated and publish messages after
translation (realizable via an appropriate pattern, above).
Applicability: Providing semantic translation between mul-
tiple heterogeneous IoT artifacts that are to exchange RDF
messages.

F. CROSS Layer

Pattern name: IoT SSL CROSS-Layer Secure Access
Inspired by: (1) Security Patterns, (2) IoT Patterns: Design
Patterns for IoT Security.
Related patterns: (1) “Login Authentication”, (2) “Sensitive
Data Encapsulation”, (3) “Encryption and Single Point of
Access”.
Intent: Ensuring security of interactions with external inter-
faces (i.e. APIs) of every layer of the IoT ecosystem.
Problem & Solution: As IoT architecture is composed by
diverse layers, access to each of them, as well as interactions
between them, must be secure. To ensure a sufficient level of

security on each of the IoT layers, different security mecha-
nisms can be implemented: authentication of credentials, use
of authentication tokens, or Secure Sockets Layer (SSL). In an
IoT ecosystem, layer access will be secured with the SSL that
employs the IoT SSL pattern. Every IoT layer exposes a REST
API that represents an external interface accessible to the
outside actors, such as other IoT layers, users, or IoT artifacts.
To enable use of such APIs to only allowed actors the access
is secured through SSL. REST APIs are accessible through
a browser, which should provide a trusted certificate. Only
after the establishment of a secure connection authentication
through login will be allowed, to open the access to the layer
API. Further operations on the layer API will be done using
this secure connection.
Applicability: Pattern applied in interactions of any actor with
the IoT environment layer’s APIs. Access can also be done
internally between pairs of different layers.

It should now be clear that, for the development of IoT inte-
gration patterns, all catalogs, described in Section III, provided
inspiration in defining the final set of design patterns. Here,
the most often used catalogs were: EIP and SOA Patterns,
because they described the most common issues, related with
communication, cooperation, etc. Moreover, while the Object-
oriented Pattern was used only as an inspiration, the format
of the GoF catalog was crucial in defining presentation format
used here. Finally, note that catalogs (described in SotA) were
not the only source of ideas in defining new design patterns.
Other sources were also common paradigms and technologies,
i.e.: “Software – defined networking orchestration”, “Network
virtualization”, “Flow–based programming” and “Web API
Design: Crafting Interfaces that Developers Love”.

VI. CONCLUDING REMARKS

This note summarized the process of defining IoT artifacts
integration patterns, starting from the SotA analysis to the
summary of the content of the current catalog. Every pattern
was described using format, which was created on the basis of
the GoF templates. Pattern descriptions outline the proposed
solution, as well as the reasons for creating a new pattern,
instead of using existing approaches. Moreover, inspirations
and example of usage have been presented. Obviously the
above catalog can be further extended as a result of future
work in the domain.

ACKNOWLEDGMENT

This research was partially supported by the Euro-
pean Union’s “Horizon 2020” research and innovation pro-
gramme as part of the “Interoperability of Heterogeneous
IoT Platforms” (INTER-IoT) project under Grant Agreement
No. 687283.

REFERENCES

[1] INTER-IoT Project homepage. [Online] Available: http://www.inter-iot-p
roject.eu (2017)

[2] F. Buschmann, “Pattern–oriented Software Architecture: A System of
Patterns”, 1996 John Wiley & Sons, Inc., New York, NY, USA.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design Patterns:
Elements of Reusable Object-oriented Software”, 1955 Boston, MA,
USA: Addison–Wesley Longman Publishing Co., Inc.

[4] E. Gamma, R, Helm, R. Johnson, L. O’Brien, “Design Patterns 15
Years Later: An Interview with Erich Gamma, Richard Helm, and Ralph
Johnson”, 2009 Software Development & Management.

[5] G. Fortino, C. Savaglio, C. E. Palau, J. Suarez de Puga, M. Ganzha,
M. Paprzycki, M. Montesinos, A. Liotta, and M. Llop, “Towards Multi-
layer Interoperability of Heterogeneous IoT Platforms: The INTER-
IoT Approach”, 2017 Integration, Interconnection, and Interoperability
of IoT Systems. Internet of Things (Technology, Communications and
Computing). Springer, Cham

[6] G. Hohpe, B. Woolf, “Enterprise Integration Patterns”, 2004 Boston, MA,
USA : Pearson Education Inc.

[7] (2017) Enterprise Integration Patterns. [Online] Available: http://www.en
terpriseintegrationpatterns.com/patterns/messaging/toc.html

[8] (2017) Service Oriented Architecture Patterns. [Online] Available: http:
//soapatterns.org/introduction

[9] (2017) A pattern language for microservices. [Online] Available: http:
//microservices.io/patterns

[10] (2017) The Reactive Manifesto. [Online] Available: http://www.reactive
manifesto.org

[11] R. Kuhn, B. Hanafee, and J. Allen, “Reactive Design Patterns”, 2016,
Manning Publications.

[12] Y. Aridor, and D. Lange, “Agent Design Patterns: Elements of Agent
Application Design”, 1998, AGENTS ’98 Proceedings of the Second
International Conference on Autonomous Agents, New York, NY, USA,
pp. 108–115.

[13] D. Duego, M. Weiss, and E. Kendall, “Reusable Patterns for Agent
Coordination”, 2001, [red.] F. Zambonelli, M. Klusch and R. Tolksdorf
A. Omicini. Coordination of Internet Agents: Models, Technologies, and
Applications, Springer.

[14] E.A. Kendall, “Role Models: Patterns of Agent System Analysis and
Design”, 1999, ACM, Agent Systems and Applications/Mobile Agents
(ASA/MA-99).

[15] M. Koster, “Design Patterns for an Internet Of Things A
Design Pattern Framework for IoT Architecture”, 2004 Avail-
able: http://community.arm.com/groups/internet-of-things/blog/2014/05/2
7/design-patterns-for-an-internet-of-things

[16] S. Qanbari, “IoT Design Patterns: Computational Constructs to Design,
Build and Engineer Edge Applications”, 2015, Berlin, Proc. of IEEE
IoTDI.

[17] B. Escribano, “Privacy and security in the Internet of Thing: challange
or opportunity”, (2017) Available: http://www.olswang.com/media/4831
5339/privacy_and_security_in_the_iot.pdf

[18] J. Ajit, M.C. Sunil, “Security considerations for Internet of Things”
(2017) Available: http://www.lnttechservices.com/sites/default/files/white
papers/2017-07/whitepaper_security-considerations-for-internet-of-thing
s.pdf

[19] M. Fowler, “Writing Software Patterns.” (2006) Available: https://www.
martinfowler.com/articles/writingPatterns.html

[20] (2017) Pattern Language Homepage Available: http://www.patternlangu
age.com/

[21] T. Wellhausen, A. Fiesser, “How to write a pattern?: a rough guide for
first-time pattern authors”, 2011 EuroPLoP ’11 Proceedings of the 16th
European Conference on Pattern Languages of Programs, New York, NY,
USA.

[22] N. B. Harrison, “Advanced Pattern Writing, Patterns for Experienced
Pattern Authors”, Available: http://europlop.net/sites/default/files/files/1
_2003_Harrison_AdvancedPatternWriting.pdf

[23] (2017) Software-defined networking orchestration Available: https://ww
w.sdxcentral.com/sdn/definitions/what

[24] (2017) Network virtualization Available: https://www.sdxcentral.com/s
dn/network-virtualization/definitions/whats-network-virtualization/

[25] M. Ganzha, M. Paprzycki, W, Pawlowski, P. Szmeja, and K.
Wasielewska, “Alignment-based semantic translation of geospatial data”,
Proceedings of 3rd International Conference on Advances in Comput-
ing, Communication & Automation (ICACCA 2017), IEEE Press, Los
Alamitos, CA, (in press).

[26] (2017) Flow–based programming Available: http://www.jpaulmorrison.
com/fbp/

[27] (2017) Web API Design: Crafting Interfaces that Developers Love
Available: https://pages.apigee.com/rs/apigee/images/api

